基于Python和OpenCV的图像目标检测及分割

          基于Python和OpenCV的图像目标检测及分割

本文在https://blog.csdn.net/sinat_36458870/article/details/78825571博主的博客基础上加了批处理部分,同时对多张图片进行裁剪处理。

è¿éåå¾çæè¿°

环境:

例图:谷歌,可爱的虫子–image 
软件:Anaconda 4.20,Opencv3.2 
OpenCv的安装: 
1.1安装Python3.5
1.2下载安装opencv

具体思路如下:

1.获取图片

img_path = r'C:\Users\aixin\Desktop\chongzi.png'
img = cv2.imread(img_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 

原图的样子:

这里写图片描述

2.转换灰度并去噪声

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (9, 9),0) 

我们可以得到这两张图,第一张是灰度图,第二张是去噪之后的,另外说一下,去噪咱们有很多种方法,均值滤波器、高斯滤波器、中值滤波器、双边滤波器等。

这里取高斯是因为高斯去噪效果是最好的。

è¿éåå¾çæè¿°

3.提取图像的梯度

gradX = cv2.Sobel(gray, ddepth=cv2.CV_32F, dx=1, dy=0)
gradY = cv2.Sobel(gray, ddepth=cv2.CV_32F, dx=0, dy=1)

gradient = cv2.subtract(gradX, gradY)
gradient = cv2.convertScaleAbs(gradient)

以Sobel算子计算x,y方向上的梯度,之后在x方向上减去y方向上的梯度,通过这个减法,我们留下具有高水平梯度和低垂直梯度的图像区域。

此时,我们会得到

è¿éåå¾çæè¿°

4.继续去噪声

考虑到图像的孔隙 首先使用低通滤泼器平滑图像, 这将有助于平滑图像中的高频噪声。 低通滤波器的目标是降低图像的变化率。 
如将每个像素替换为该像素周围像素的均值, 这样就可以平滑并替代那些强度变化明显的区域。

对模糊图像二值化,顾名思义,就是把图像数值以某一边界分成两种数值。

blurred = cv2.GaussianBlur(gradient, (9, 9),0)
(_, thresh) = cv2.threshold(blurred, 90, 255, cv2.THRESH_BINARY)

此时,我们会得到 

è¿éåå¾çæè¿°

5.图像形态学

在这里我们选取ELLIPSE核,采用CLOSE操作。

kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (25, 25))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)

此时,我们会得到 
这里写图片描述

6.细节刻画

从上图我们可以发现和原图对比,发现有细节丢失,这会干扰之后的昆虫轮廓的检测,要把它们扩充,分别执行4次形态学腐蚀与膨胀。

closed = cv2.erode(closed, None, iterations=4)
closed = cv2.dilate(closed, None, iterations=4)

此时,我们会得到 
这里写图片描述

7.找出昆虫区域的轮廓

此时用cv2.findContours()函数 
第一个参数是要检索的图片,必须是为二值图,即黑白的(不是灰度图)

(_, cnts, _) = cv2.findContours(
    参数一: 二值化图像
    closed.copy(),
    参数二:轮廓类型
    # cv2.RETR_EXTERNAL,             #表示只检测外轮廓
    # cv2.RETR_CCOMP,                #建立两个等级的轮廓,上一层是边界
    # cv2.RETR_LIST,                 #检测的轮廓不建立等级关系
    # cv2.RETR_TREE,                 #建立一个等级树结构的轮廓
    # cv2.CHAIN_APPROX_NONE,         #存储所有的轮廓点,相邻的两个点的像素位置差不超过1
    参数三:处理近似方法
    # cv2.CHAIN_APPROX_SIMPLE,         #例如一个矩形轮廓只需4个点来保存轮廓信息
    # cv2.CHAIN_APPROX_TC89_L1,
    # cv2.CHAIN_APPROX_TC89_KCOS
    )

8.画出轮廓

找到轮廓了,接下来,要画出来的,即用cv2.drawContours()函数。

c = sorted(cnts, key=cv2.contourArea, reverse=True)[0]

# compute the rotated bounding box of the largest contour
rect = cv2.minAreaRect(c)
box = np.int0(cv2.boxPoints(rect))

# draw a bounding box arounded the detected barcode and display the image
draw_img = cv2.drawContours(img.copy(), [box], -1, (0, 0, 255), 3)
cv2.imshow("draw_img", draw_img)

此时,我们会得到 
这里写图片描述

9.裁剪

找到这四个点切出来就好,我们放大一点看一下细节

è¿éåå¾çæè¿°

Xs = [i[0] for i in box]
Ys = [i[1] for i in box]
x1 = min(Xs)
x2 = max(Xs)
y1 = min(Ys)
y2 = max(Ys)
hight = y2 - y1
width = x2 - x1
crop_img= img[y1:y1+hight, x1:x1+width]
cv2.imshow('crop_img', crop_img)

其实,box里保存的是绿色矩形区域四个顶点的坐标。 我将按下图红色矩形所示裁剪昆虫图像。 
找出四个顶点的x,y坐标的最大最小值。新图像的高=maxY-minY,宽=maxX-minX 

 

最终得到了目标区域。

è¿éåå¾çæè¿°

附录1.完整实现代码

#-*- coding: UTF-8 -*- 

import cv2
import numpy as np
import os

def get_image(path):
    #获取图片
    img=cv2.imread(path)
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

    return img, gray

def Gaussian_Blur(gray):
    # 高斯去噪
    blurred = cv2.GaussianBlur(gray, (9, 9),0)

    return blurred

def Sobel_gradient(blurred):
    # 索比尔算子来计算x、y方向梯度
    gradX = cv2.Sobel(blurred, ddepth=cv2.CV_32F, dx=1, dy=0)
    gradY = cv2.Sobel(blurred, ddepth=cv2.CV_32F, dx=0, dy=1)

    gradient = cv2.subtract(gradX, gradY)
    gradient = cv2.convertScaleAbs(gradient)

    return gradX, gradY, gradient

def Thresh_and_blur(gradient):

    blurred = cv2.GaussianBlur(gradient, (9, 9),0)
    (_, thresh) = cv2.threshold(blurred, 90, 255, cv2.THRESH_BINARY)

    return thresh

def image_morphology(thresh):
    # 建立一个椭圆核函数
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (25, 25))
    # 执行图像形态学, 细节直接查文档,很简单
    closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
    closed = cv2.erode(closed, None, iterations=0)
    closed = cv2.dilate(closed, None, iterations=2)

    return closed

def findcnts_and_box_point(closed):
    # 这里opencv3返回的是三个参数
    (_, cnts, _) = cv2.findContours(closed.copy(), 
        #cv2.RETR_EXTERNAL,             #表示只检测外轮廓
    #cv2.RETR_CCOMP,                #建立两个等级的轮廓,上一层是边界
    cv2.RETR_LIST,                 #检测的轮廓不建立等级关系
    #cv2.RETR_TREE,                   #建立一个等级树结构的轮廓
    cv2.CHAIN_APPROX_NONE,           #存储所有的轮廓点,相邻的两个点的像素位置差不超过1
    #cv2.CHAIN_APPROX_SIMPLE,       #例如一个矩形轮廓只需4个点来保存轮廓信息
    #cv2.CHAIN_APPROX_TC89_L1,
    #cv2.CHAIN_APPROX_TC89_KCOS
        )
    c = sorted(cnts, key=cv2.contourArea, reverse=True)[0]
    # compute the rotated bounding box of the largest contour
    rect = cv2.minAreaRect(c)
    box = np.int0(cv2.boxPoints(rect))

    return box

def drawcnts_and_cut(original_img, box):
    # 因为这个函数有极强的破坏性,所有需要在img.copy()上画
    # draw a bounding box arounded the detected barcode and display the image
    draw_img = cv2.drawContours(original_img.copy(), [box], -1, (0, 0, 255), 3)

    Xs = [i[0] for i in box]
    Ys = [i[1] for i in box]
    x1 = min(Xs)
    x2 = max(Xs)
    y1 = min(Ys)
    y2 = max(Ys)
    hight = y2 - y1
    width = x2 - x1
    crop_img = original_img[y1:y1+hight, x1:x1+width]

    return draw_img, crop_img
'''
def walk():############批处理
    filename_rgb = r'D:\py_project\My_Project\dataset\trainingData'
    for filename in os.listdir(filename_rgb):              #listdir的参数是文件夹的路径
        #img_path = r'D:\py_project\My_Project\296.png'
        #save_path = r'D:\py_project\My_Project\296_save.jpg'
        img_path = filename_rgb + ('/%s' % filename)
        save_path = r'D:\py_project\My_Project\dataset\trainingData_process'
        original_img, gray = get_image(img_path)
        blurred = Gaussian_Blur(gray)
        gradX, gradY, gradient = Sobel_gradient(blurred)
        thresh = Thresh_and_blur(gradient)
        closed = image_morphology(thresh)
        box = findcnts_and_box_point(closed)
        draw_img, crop_img = drawcnts_and_cut(original_img,box)



#    cv2.imshow('original_img', original_img)
#    cv2.imshow('blurred', blurred)
#    cv2.imshow('gradX', gradX)
#    cv2.imshow('gradY', gradY)
#    cv2.imshow('final', gradient)
#    cv2.imshow('thresh', thresh)
#    cv2.imshow('closed', closed)
#    cv2.imshow('draw_img', draw_img)
#    cv2.imshow('crop_img', crop_img)
#    cv2.waitKey(20171219)
        file_process_name = save_path + ('\%s' % filename)
        print(file_process_name)
        cv2.imwrite(file_process_name, crop_img)
'''
def walk2():######################单张图片处理
    img_path = r'D:\py_project\My_Project\dataset\25.jpg'
    save_path = r'D:\py_project\My_Project\dataset\25_save.jpg'
    original_img, gray = get_image(img_path)
    blurred = Gaussian_Blur(gray)
    gradX, gradY, gradient = Sobel_gradient(blurred)
    thresh = Thresh_and_blur(gradient)
    closed = image_morphology(thresh)
    box = findcnts_and_box_point(closed)
    draw_img, crop_img = drawcnts_and_cut(original_img,box)



#    cv2.imshow('original_img', original_img)
#    cv2.imshow('blurred', blurred)
#    cv2.imshow('gradX', gradX)
#    cv2.imshow('gradY', gradY)
#    cv2.imshow('final', gradient)
#    cv2.imshow('thresh', thresh)
#    cv2.imshow('closed', closed)
#    cv2.imshow('draw_img', draw_img)
#    cv2.imshow('crop_img', crop_img)
#    cv2.waitKey(20171219)
    cv2.imwrite(save_path, crop_img)
walk2()

附录2.本篇文章精华函数说明

# 用来转化图像格式的
img = cv2.cvtColor(src, 
    COLOR_BGR2HSV # BGR---->HSV
    COLOR_HSV2BGR # HSV---->BGR
    ...)
# For HSV, Hue range is [0,179], Saturation range is [0,255] and Value range is [0,255]


# 返回一个阈值,和二值化图像,第一个阈值是用来otsu方法时候用的
# 不过现在不用了,因为可以通过mahotas直接实现
T = ret = mahotas.threshold(blurred)
ret, thresh_img = cv2.threshold(src, # 一般是灰度图像
    num1, # 图像阈值
    num2, # 如果大于或者num1, 像素值将会变成 num2
# 最后一个二值化参数
    cv2.THRESH_BINARY      # 将大于阈值的灰度值设为最大灰度值,小于阈值的值设为0
    cv2.THRESH_BINARY_INV  # 将大于阈值的灰度值设为0,大于阈值的值设为最大灰度值
    cv2.THRESH_TRUNC       # 将大于阈值的灰度值设为阈值,小于阈值的值保持不变
    cv2.THRESH_TOZERO      # 将小于阈值的灰度值设为0,大于阈值的值保持不变
    cv2.THRESH_TOZERO_INV  # 将大于阈值的灰度值设为0,小于阈值的值保持不变
)
thresh = cv2.AdaptiveThreshold(src, 
    dst, 
    maxValue, 
    # adaptive_method 
    ADAPTIVE_THRESH_MEAN_C,      
    ADAPTIVE_THRESH_GAUSSIAN_C,      
    # thresholdType
    THRESH_BINARY, 
    THRESH_BINARY_INV, 
    blockSize=3,
    param1=5
)


# 一般是在黑色背景中找白色物体,所以原始图像背景最好是黑色
# 在执行找边缘的时候,一般是threshold 或者是canny 边缘检测后进行的。
# warning:此函数会修改原始图像、
# 返回:坐标位置(x,y), 
(_, cnts, _) = cv2.findContours(mask.copy(), 
    # cv2.RETR_EXTERNAL,             #表示只检测外轮廓
    # cv2.RETR_CCOMP,                #建立两个等级的轮廓,上一层是边界
    cv2.RETR_LIST,                 #检测的轮廓不建立等级关系
    # cv2.RETR_TREE,                   #建立一个等级树结构的轮廓
    # cv2.CHAIN_APPROX_NONE,           #存储所有的轮廓点,相邻的两个点的像素位置差不超过1
    cv2.CHAIN_APPROX_SIMPLE,       #例如一个矩形轮廓只需4个点来保存轮廓信息
    # cv2.CHAIN_APPROX_TC89_L1,
    # cv2.CHAIN_APPROX_TC89_KCOS
   )
img = cv2.drawContours(src, cnts, whichToDraw(-1), color, line)


img = cv2.imwrite(filename, dst,  # 文件路径,和目标图像文件矩阵

    # 对于JPEG,其表示的是图像的质量,用0-100的整数表示,默认为95
    # 注意,cv2.IMWRITE_JPEG_QUALITY类型为Long,必须转换成int
    [int(cv2.IMWRITE_JPEG_QUALITY), 5] 
    [int(cv2.IMWRITE_JPEG_QUALITY), 95]
    # 从0到9,压缩级别越高,图像尺寸越小。默认级别为3
    [int(cv2.IMWRITE_PNG_COMPRESSION), 5])
    [int(cv2.IMWRITE_PNG_COMPRESSION), 9])

# 如果你不知道用哪个flags,毕竟太多了哪能全记住,直接找找。
寻找某个函数或者变量
events = [i for i in dir(cv2) if 'PNG' in i]
print( events )

寻找某个变量开头的flags
flags = [i for i in dir(cv2) if i.startswith('COLOR_')]
print flags

批量读取文件名字
import os
filename_rgb = r'C:\Users\aixin\Desktop\all_my_learning\colony\20170629'
for filename in os.listdir(filename_rgb):              #listdir的参数是文件夹的路径
    print (filename)

 

附录3.实验效果图

 

【转载】https://blog.csdn.net/sinat_36458870/article/details/78825571 

相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页